Elevated levels of plasma propafenone may occur when propafenone is used concomitantly with SSRIs, such as fluoxetine and paroxetine. Concomitant administration of propafenone and fexetine in extensive metabolizers increases the S-propafenone Cmax by 30% and 50% and the R-propafenone Cmax and AUC by 71% and 50% lower doses of propafenone may therefore be sufficient to achieve the desired therapeutic response. Close monitoring of patients who have been receiving concomitant oral anticoagulants (e.g., phenprocoumon, warfarin) is recommended as propafenone may enhance the plasma levels of these oral anticoagulants and an increased risk is possible. Doses of these medicinal products should be adjusted if necessary.

Co-administration of propafenone hydrochloride with drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.

Co-administration of propafenone hydrochloride and drugs metabolised by CYP2D6 (such as venlafaxine) may lead to increases in plasma concentrations that inhibit CYP2D6, CYP1A2 and CYP3A4, e.g., ketoconazole, ciclosporin, quinidine, erythromycin and grapefruit juice may lead to increased levels of propafenone. When propafenone is administered as inhibitors of these enzymes, the patients should be closely monitored and the dose adjusted accordingly.